ربط حساس تدفق الماء مع الاردوينو والتحكم به 1

 تم نشر هذا المشروع لجميع الأشخاص المهتمين في مجال تصنيع وابتكار المشاريع الإلكترونية والبرمجية، و نود التنويه أن موقع انا الكتروني يخلي مسؤوليته التامة في حال لم يعمل المشروع لدى العميل أو في حال الاستخدام الخاطئ للمكونات الإلكترونية والكهربائية التي قد تؤدي لحدوث الحرائق أو غيرها لا سمح الله.

مقدمــــــــــة عن المشروع

مقدمــــــــــة عن المشروع

في هذا المشروع سوف تتعلم كيفية استخدام جهاز استشعار تدفق المياه مع لوحة اردوينو .

يتكون مستشعر تدفق المياه من جسم الصمام البلاستيكي ، و دوار الماء ومستشعر تأثير القاعة . عندما يتدفق الماء عبر الدوار ، تتغير لفات الدوار وتتغير سرعته بمعدل تدفق مختلف . يقوم مستشعر تأثير القاعة بإخراج إشارة النبض المقابلة .

يمكن العثور على هذا النوع من أجهزة الاستشعار على أقطار أو أبعاد مختلفة القطر   ، ويبلغ ضغط المياه (MPa) ومعدل التدفق (L / m) .

تأكد من اختيار واحدة تغطي احتياجاتك . المستشعر الذي نتحدث عنه يبلغ قطره 20 ملم ، وضغط المياه <1.75 ميجا باسكال ونطاق معدل التدفق ~ 30 لتر / م.

في هذا المشروع ، سوف نستخدم الشاشة التسلسلية لطباعة معدل تدفق المياه باللترات في الساعة وإجمالي اللترات المتدفقة منذ البداية .

اذا هيا بنا نبدأ !!!!

  1. عدد 10 أسلاك التوصيل ذكر الي ذكر
  2. لوح اردوينو مع كابل USB
  3. لوح تجارب
  4. مزود طاقة 5 فولت
  5. حساس تدفق الماء

طريقة العمل التوصيل

F2S7PK4ION6O0G9.LARGE_-1000x550

طريقة التوصيل طبقا للمخطط أعلاه .

تنبيه : في حال لم تكن متأكد من قدرتك على تنفيذ خطوات المشروع يرجى استشارة شخص متخصص في هذا المجال.

الكـــــــــــود البرمجي

لتحميل الكود البرمجي اضغط هنا
/*
Liquid flow rate sensor 

Measure the liquid/water flow rate using this code. 
Connect Vcc and Gnd of sensor to arduino, and the 
signal line to arduino digital pin 2.
 
 */

byte statusLed    = 13;

byte sensorInterrupt = 0;  // 0 = digital pin 2
byte sensorPin       = 2;

// The hall-effect flow sensor outputs approximately 4.5 pulses per second per
// litre/minute of flow.
float calibrationFactor = 4.5;

volatile byte pulseCount;  

float flowRate;
unsigned int flowMilliLitres;
unsigned long totalMilliLitres;

unsigned long oldTime;

void setup()
{
  
  // Initialize a serial connection for reporting values to the host
  Serial.begin(9600);
   
  // Set up the status LED line as an output
  pinMode(statusLed, OUTPUT);
  digitalWrite(statusLed, HIGH);  // We have an active-low LED attached
  
  pinMode(sensorPin, INPUT);
  digitalWrite(sensorPin, HIGH);

  pulseCount        = 0;
  flowRate          = 0.0;
  flowMilliLitres   = 0;
  totalMilliLitres  = 0;
  oldTime           = 0;

  // The Hall-effect sensor is connected to pin 2 which uses interrupt 0.
  // Configured to trigger on a FALLING state change (transition from HIGH
  // state to LOW state)
  attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
}

/**
 * Main program loop
 */
void loop()
{
   
   if((millis() - oldTime) > 1000)    // Only process counters once per second
  { 
    // Disable the interrupt while calculating flow rate and sending the value to
    // the host
    detachInterrupt(sensorInterrupt);
        
    // Because this loop may not complete in exactly 1 second intervals we calculate
    // the number of milliseconds that have passed since the last execution and use
    // that to scale the output. We also apply the calibrationFactor to scale the output
    // based on the number of pulses per second per units of measure (litres/minute in
    // this case) coming from the sensor.
    flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor;
    
    // Note the time this processing pass was executed. Note that because we've
    // disabled interrupts the millis() function won't actually be incrementing right
    // at this point, but it will still return the value it was set to just before
    // interrupts went away.
    oldTime = millis();
    
    // Divide the flow rate in litres/minute by 60 to determine how many litres have
    // passed through the sensor in this 1 second interval, then multiply by 1000 to
    // convert to millilitres.
    flowMilliLitres = (flowRate / 60) * 1000;
    
    // Add the millilitres passed in this second to the cumulative total
    totalMilliLitres += flowMilliLitres;
      
    unsigned int frac;
    
    // Print the flow rate for this second in litres / minute
    Serial.print("Flow rate: ");
    Serial.print(int(flowRate));  // Print the integer part of the variable
    Serial.print("L/min");
    Serial.print("\t"); 		  // Print tab space

    // Print the cumulative total of litres flowed since starting
    Serial.print("Output Liquid Quantity: ");        
    Serial.print(totalMilliLitres);
    Serial.println("mL"); 
    Serial.print("\t"); 		  // Print tab space
  Serial.print(totalMilliLitres/1000);
  Serial.print("L");
    

    // Reset the pulse counter so we can start incrementing again
    pulseCount = 0;
    
    // Enable the interrupt again now that we've finished sending output
    attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
  }
}

/*
Insterrupt Service Routine
 */
void pulseCounter()
{
  // Increment the pulse counter
  pulseCount++;
}

أنتهت !!!

1 Comments

  1. Nice working

    El Tahir Adam Abdall

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *